Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -acetato-bis[triaquabis(thiocyanato- κN)(pyridine *N*-oxide- κO)neodymium(III)]

Shi-Guo Zhang^a and Jing-Min Shi^{b*}

^aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and ^bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: shijingmin@beelink.com

Received 7 May 2007; accepted 24 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.031; wR factor = 0.071; data-to-parameter ratio = 15.2.

The title binuclear complex, $[Nd_2(\mu-C_2H_3O_2)_2(NCS)_4(C_5H_5NO)_2(H_2O)_6]$, lies about an inversion centre at the centroid of the four-membered Nd_2O_2 ring, with the two acetate ions acting as bridging ligands. A monodentate pyridine *N*-oxide ligand, two terminal thiocyanate groups and three water molecules complete the coordination environments of each nine-coordinate Nd^{III} atom. O– $H \cdots O$, O– $H \cdots N$ and O– $H \cdots S$ hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For related structures, see: Kato et al. (1964); Zhang et al. (2006).

 $\beta = 102.813 \ (2)^{\circ}$

Experimental

Crystal data

 $\begin{bmatrix} Nd_2(C_2H_3O_2)_2(NCS)_{4^-} \\ (C_5H_5NO)_2(H_2O)_{6} \end{bmatrix} \\ M_r = 937.18 \\ Monoclinic, P2_1/n \\ a = 9.1588 (15) Å \\ b = 16.185 (3) Å \\ c = 11.3892 (18) Å$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.249, T_{max} = 0.821$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.071$ S = 1.022900 reflections 191 parameters $V = 1646.3 (5) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 3.43 \text{ mm}^{-1}$ T = 298 (2) K $0.56 \times 0.07 \times 0.06 \text{ mm}$

6827 measured reflections 2900 independent reflections 2545 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

9 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.39$ e Å⁻³ $\Delta \rho_{min} = -0.95$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{ccccccc} 06-H9\cdots 02^{ii} & 0.85 & 1.85 & 2.686 \ (4) & 167 \\ 06-H8\cdots 82^{iii} & 0.85 & 2.31 & 3.162 \ (4) & 175 \\ 05-H10\cdots 82^{iii} & 0.85 & 2.73 & 3.534 \ (4) & 159 \\ 05-H11\cdots 81^{iv} & 0.84 & 2.40 & 3.236 \ (4) & 169 \\ 04-H7\cdots 81^{ii} & 0.82 & 2.45 & 3.220 \ (4) & 157 \\ 04-H6\cdots N1^{i} & 0.85 & 2.70 & 3.484 \ (5) & 155 \\ \end{array}$	O4−H6···O1 ⁱ	0.85	1.83	2.675 (5)	178
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6−H9···O2 ⁱⁱ	0.85	1.85	2.686 (4)	167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6−H8···S2 ⁱⁱⁱ	0.85	2.31	3.162 (4)	175
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O5-H10$ ··· $S2^{iii}$	0.85	2.73	3.534 (4)	159
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O5-H11\cdots S1^{iv}$	0.84	2.40	3.236 (4)	169
$O4-H6\cdots N1^{i}$ 0.85 2.70 3.484 (5) 155	$O4-H7\cdots S1^{ii}$	0.82	2.45	3.220 (4)	157
	$O4-H6\cdots N1^i$	0.85	2.70	3.484 (5)	155

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$;

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. Y2005B25).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2319).

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06a), Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). *Chem. Rev.* 64, 99–128.Sheldrick, G. M. (1996). *SADABS*. Version 2.10. University of Göttingen, Germany.

Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006). Acta Cryst. E62, m3398-m3400.

supplementary materials

Acta Cryst. (2007). E63, m1763 [doi:10.1107/S1600536807025457]

Di-*µ*-acetato-bis[triaquabis(thiocyanato-*κN*)(pyridine *N*-oxide-*κO*)neodymium(III)]

S.-G. Zhang and J.-M. Shi

Comment

Acetate, thiocyanate and pyridine N-oxide or its derivatives are all known to function as bridging ligands (Kato *et al.*, 1964; Zhang *et al.*, 2006), and we are interested in complexes with mixed bridge ligands which led to the synthesis of the title complex (I) and we report its structure here, Fig. 1. In the binuclear structure acetate acts as a bridging ligand, whereas thiocyanate, water and pyridine N-oxide only function as terminal ligands. The Nd and bridging acetate O atoms form a four-membered ring by virtue of the crystallographic inversion center which is at the centroid of the ring. The distance between the bridged Nd(III) ions is 4.4167 (7) Å, and atoms Nd1, Nd1ⁱ, O3 and O3ⁱ are strictly coplanar (i = -x + 2, -y + 2, -z + 1). An extensive set of O—H…O, O—H…N and O—H…S hydrogen bonds (Table 1) connect the binuclear units into a three-dimensional supermolecular structure.

Experimental

 $Nd(ClO_4)_3$ ·6H₂O (0.2891 g, 0.525 mmol), NaSCN (0.0872 g, 1.08 mmol), pyridine N-oxide (0.0502 g, 0.528 mmol) and Na(CH₃COO) (0.0435 g, 0.530 mmol) were each dissolved in 5 ml of water. The solutions were then mixed together and stirred for a few minutes. Colourless transparent single crystals were obtained on allowing the solution to stand for two weeks at room temperature.

Refinement

The H atoms from H₂O were found in a difference Fourier map and fixed with d(O-H) = 0.8200-0.8502 Å, $U_{iso}(H) = 1.5_{eq}(O)$. Other H atoms were placed in calculated positions, and refined as riding, with C-H = 0.93 Å, $U_{iso}(H) = 1.2_{eq}(C)$ for the pyridine ring; C-H = 0.96 Å, $U_{iso}(H) = 1.5_{eq}(C)$ for the methyl groups.

Figures

Fig. 1. Binuclear structure of (I) showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 2, -y + 2, -z + 1].

Di-μ-acetato-bis[triaquabis(thiocyanato-κN)(pyridine N-oxide-κO)neodymium(III)]

Crystal data

[Nd₂(C₂H₃O₂)₂(NCS)₄(C₅H₅NO)₂(H₂O)₆] $F_{000} = 916$ $M_r = 937.18$ $D_{\rm x} = 1.891 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 3146 reflections a = 9.1588 (15) Å $\theta = 2.2 - 26.8^{\circ}$ *b* = 16.185 (3) Å $\mu = 3.43 \text{ mm}^{-1}$ *c* = 11.3892 (18) Å T = 298 (2) K $\beta = 102.813 \ (2)^{\circ}$ Prism, colourless $0.56 \times 0.07 \times 0.06 \text{ mm}$ $V = 1646.3 (5) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2900 independent reflections
Radiation source: fine-focus sealed tube	2545 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.249, T_{\max} = 0.821$	$k = -19 \rightarrow 17$
6827 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.071$	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 1.869P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2900 reflections	$\Delta \rho_{max} = 1.39 \text{ e} \text{ Å}^{-3}$
191 parameters	$\Delta \rho_{min} = -0.95 \text{ e } \text{\AA}^{-3}$
9 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant di methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Nd1	0.81351 (3)	0.914089 (14)	0.50289 (2)	0.02859 (10)
S2	0.9773 (2)	0.60651 (9)	0.60836 (14)	0.0636 (5)
S1	0.4319 (2)	0.85963 (10)	0.77853 (17)	0.0731 (5)
C6	0.8144 (5)	1.0972 (3)	0.5558 (4)	0.0324 (11)
O3	0.9353 (3)	1.07210 (19)	0.5326 (3)	0.0367 (8)
N1	0.9405 (4)	0.9164 (2)	0.8172 (3)	0.0355 (9)
O6	0.5523 (4)	0.9109 (2)	0.3919 (3)	0.0516 (10)
Н9	0.4761	0.9210	0.4205	0.077*
H8	0.5265	0.9077	0.3156	0.077*
01	0.9538 (4)	0.9411 (2)	0.7079 (3)	0.0465 (9)
02	0.7084 (3)	1.0477 (2)	0.5525 (3)	0.0384 (8)
05	0.7805 (5)	0.8141 (2)	0.3268 (3)	0.0626 (11)
H10	0.7260	0.8323	0.2620	0.094*
H11	0.8307	0.7728	0.3133	0.094*
N3	0.6407 (5)	0.8676 (3)	0.6364 (4)	0.0471 (11)
N2	0.9058 (6)	0.7726 (3)	0.5737 (5)	0.0645 (14)
С9	0.9357 (6)	0.7034 (4)	0.5892 (4)	0.0447 (13)
C2	1.0314 (6)	0.8571 (3)	0.8735 (5)	0.0514 (14)
H2	1.0996	0.8315	0.8358	0.062*
C7	0.7971 (7)	1.1846 (4)	0.5870 (7)	0.076 (2)
H7A	0.6963	1.1942	0.5948	0.114*
H7B	0.8186	1.2194	0.5246	0.114*
H7C	0.8653	1.1972	0.6618	0.114*
C1	1.0225 (7)	0.8348 (4)	0.9877 (6)	0.0655 (18)
H1	1.0855	0.7939	1.0281	0.079*
O4	0.7882 (4)	0.9858 (2)	0.3048 (3)	0.0408 (8)
H7	0.7158	1.0170	0.2940	0.061*
H6	0.8692	1.0094	0.2993	0.061*
C3	0.8400 (6)	0.9531 (3)	0.8683 (5)	0.0438 (12)
H3	0.7771	0.9936	0.8268	0.053*
C4	0.8298 (7)	0.9311 (4)	0.9810 (5)	0.0622 (18)
H4	0.7595	0.9565	1.0167	0.075*
C5	0.9224 (8)	0.8719 (5)	1.0422 (6)	0.077 (2)

supplementary materials

Н5	0.9169	0.8571	1.1200	0.092*
C8	0.5514 (5)	0.8627 (3)	0.6923 (4)	0.0358 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.02128 (15)	0.03128 (15)	0.03543 (16)	0.00006 (10)	0.01103 (11)	0.00093 (11)
S2	0.0951 (13)	0.0463 (9)	0.0496 (9)	0.0206 (8)	0.0162 (9)	0.0095 (7)
S1	0.0744 (12)	0.0619 (10)	0.1033 (13)	0.0212 (8)	0.0629 (11)	0.0405 (10)
C6	0.023 (3)	0.032 (3)	0.044 (3)	0.0065 (19)	0.012 (2)	-0.003 (2)
03	0.0235 (17)	0.0415 (19)	0.048 (2)	0.0027 (14)	0.0133 (15)	0.0014 (15)
N1	0.030 (2)	0.041 (2)	0.035 (2)	-0.0081 (18)	0.0058 (18)	0.0038 (18)
06	0.0186 (17)	0.090 (3)	0.048 (2)	-0.0006 (17)	0.0123 (16)	-0.013 (2)
01	0.037 (2)	0.070(2)	0.0341 (18)	-0.0149 (18)	0.0091 (16)	0.0106 (17)
O2	0.0251 (18)	0.0377 (19)	0.057 (2)	-0.0008 (15)	0.0186 (16)	-0.0071 (16)
05	0.072 (3)	0.051 (2)	0.059 (2)	0.020 (2)	0.002 (2)	-0.015 (2)
N3	0.041 (3)	0.054 (3)	0.049 (3)	-0.005 (2)	0.015 (2)	0.008 (2)
N2	0.075 (4)	0.051 (3)	0.072 (3)	0.018 (3)	0.026 (3)	0.020 (3)
C9	0.043 (3)	0.055 (4)	0.037 (3)	0.007 (3)	0.009 (2)	0.009 (3)
C2	0.045 (3)	0.049 (3)	0.061 (4)	0.007 (3)	0.013 (3)	0.007 (3)
C7	0.049 (4)	0.043 (4)	0.144 (7)	-0.008 (3)	0.036 (4)	-0.025 (4)
C1	0.062 (4)	0.064 (4)	0.063 (4)	-0.005 (3)	-0.003 (3)	0.026 (3)
O4	0.0265 (18)	0.048 (2)	0.048 (2)	-0.0047 (15)	0.0069 (15)	0.0086 (16)
C3	0.033 (3)	0.049 (3)	0.050 (3)	-0.001 (2)	0.010 (2)	-0.004 (3)
C4	0.052 (4)	0.092 (5)	0.049 (4)	-0.014 (3)	0.025 (3)	-0.013 (3)
C5	0.075 (5)	0.110 (6)	0.046 (4)	-0.032 (5)	0.017 (4)	0.016 (4)
C8	0.035 (3)	0.037 (3)	0.036 (3)	-0.002 (2)	0.010(2)	0.007 (2)

Geometric parameters (Å, °)

2.433 (3)	O6—H8	0.8502
2.441 (3)	O5—H10	0.8473
2.446 (3)	O5—H11	0.8439
2.483 (3)	N3—C8	1.145 (6)
2.502 (3)	N2—C9	1.157 (7)
2.511 (5)	C2—C1	1.369 (8)
2.540 (4)	C2—H2	0.9300
2.542 (4)	С7—Н7А	0.9600
2.781 (3)	С7—Н7В	0.9600
1.617 (6)	С7—Н7С	0.9600
1.626 (5)	C1—C5	1.357 (10)
1.253 (5)	C1—H1	0.9300
1.261 (5)	O4—H7	0.8200
1.476 (7)	O4—H6	0.8492
2.433 (3)	C3—C4	1.354 (8)
1.333 (6)	С3—Н3	0.9300
1.338 (6)	C4—C5	1.365 (10)
1.339 (5)	C4—H4	0.9300
	2.433 (3) 2.441 (3) 2.446 (3) 2.483 (3) 2.502 (3) 2.511 (5) 2.540 (4) 2.542 (4) 2.781 (3) 1.617 (6) 1.626 (5) 1.253 (5) 1.261 (5) 1.476 (7) 2.433 (3) 1.338 (6) 1.339 (5)	2.433 (3) $06-H8$ $2.441 (3)$ $05-H10$ $2.446 (3)$ $05-H11$ $2.446 (3)$ $05-H11$ $2.483 (3)$ $N3-C8$ $2.502 (3)$ $N2-C9$ $2.511 (5)$ $C2-C1$ $2.540 (4)$ $C2-H2$ $2.542 (4)$ $C7-H7A$ $2.781 (3)$ $C7-H7B$ $1.617 (6)$ $C7-H7C$ $1.626 (5)$ $C1-C5$ $1.253 (5)$ $C1-H1$ $1.261 (5)$ $04-H7$ $1.476 (7)$ $04-H6$ $2.433 (3)$ $C3-C4$ $1.338 (6)$ $C4-C5$ $1.339 (5)$ $C4-H4$

Об—Н9	0.8483	С5—Н5	0.9300
O3 ⁱ —Nd1—O1	79.97 (11)	Nd1 ⁱ —O3—Nd1	115.65 (11)
O3 ⁱ —Nd1—O6	140.26 (11)	C3—N1—C2	121.8 (5)
O1—Nd1—O6	138.13 (12)	C3—N1—O1	119.2 (4)
O3 ⁱ —Nd1—O2	112.74 (10)	C2—N1—O1	119.0 (4)
O1—Nd1—O2	76.98 (12)	Nd1—O6—H9	126.2
O6—Nd1—O2	75.61 (11)	Nd1—O6—H8	123.2
O3 ⁱ —Nd1—O4	73.13 (10)	Н9—О6—Н8	109.8
O1—Nd1—O4	134.66 (11)	N1—O1—Nd1	134.3 (3)
O6—Nd1—O4	70.08 (11)	C6—O2—Nd1	103.1 (3)
O2—Nd1—O4	80.67 (11)	Nd1—O5—H10	114.2
O3 ⁱ —Nd1—N2	82.75 (14)	Nd1—O5—H11	132.3
O1—Nd1—N2	77.77 (15)	H10—O5—H11	110.8
O6—Nd1—N2	111.58 (16)	C8—N3—Nd1	165.9 (4)
O2—Nd1—N2	147.25 (14)	C9—N2—Nd1	169.4 (5)
O4—Nd1—N2	132.08 (14)	N2—C9—S2	179.0 (5)
O3 ⁱ —Nd1—N3	149.81 (12)	N1—C2—C1	118.9 (6)
O1—Nd1—N3	75.30 (12)	N1—C2—H2	120.5
O6—Nd1—N3	68.60 (13)	C1—C2—H2	120.5
O2—Nd1—N3	78.31 (13)	С6—С7—Н7А	109.5
O4—Nd1—N3	137.05 (12)	С6—С7—Н7В	109.5
N2—Nd1—N3	75.37 (16)	H7A—C7—H7B	109.5
O3 ⁱ —Nd1—O5	83.04 (12)	С6—С7—Н7С	109.5
O1—Nd1—O5	144.44 (13)	Н7А—С7—Н7С	109.5
O6—Nd1—O5	69.37 (12)	H7B—C7—H7C	109.5
O2—Nd1—O5	138.57 (12)	C5—C1—C2	120.5 (6)
O4—Nd1—O5	67.24 (12)	С5—С1—Н1	119.8
N2—Nd1—O5	69.24 (15)	C2—C1—H1	119.8
N3—Nd1—O5	107.62 (14)	Nd1—O4—H7	109.4
O3 ⁱ —Nd1—O3	64.35 (12)	Nd1—O4—H6	111.6
O1—Nd1—O3	66.88 (11)	H7—O4—H6	113.8
O6—Nd1—O3	113.70 (11)	N1—C3—C4	119.8 (6)
O2—Nd1—O3	48.43 (10)	N1—C3—H3	120.1
O4—Nd1—O3	68.72 (10)	С4—С3—Н3	120.1
N2—Nd1—O3	134.63 (15)	C3—C4—C5	120.2 (6)
N3—Nd1—O3	119.09 (12)	C3—C4—H4	119.9
O5—Nd1—O3	130.97 (12)	C5—C4—H4	119.9
02 - C6 - 03	119.9 (4)	C1 - C5 - C4	118.9 (6)
$02 - C_{6} - C_{7}$	119.8 (4)	C1—C5—H5	120.6
	120.3 (4)	C4—C5—H5	120.6
C6—O3—Nd1 ¹	155.7 (3)	N3-C8-S1	1/6.2 (5)
C6—O3—Nd1	88.6 (3)		
O2—C6—O3—Nd1 ⁱ	174.7 (5)	O1—Nd1—O2—C6	69.5 (3)
C7—C6—O3—Nd1 ⁱ	-5.3 (11)	O6—Nd1—O2—C6	-142.5 (3)
O2—C6—O3—Nd1	-1.7 (4)	O4—Nd1—O2—C6	-70.8 (3)
C7—C6—O3—Nd1	178.4 (5)	N2—Nd1—O2—C6	109.9 (4)

supplementary materials

O3 ⁱ —Nd1—O3—C6	178.3 (3)	N3—Nd1—O2—C6	146.9 (3)
O1—Nd1—O3—C6	-92.0 (3)	O5—Nd1—O2—C6	-109.6 (3)
O6—Nd1—O3—C6	42.2 (3)	O3—Nd1—O2—C6	-1.0 (3)
O2—Nd1—O3—C6	1.0 (3)	O3 ⁱ —Nd1—N3—C8	129.8 (16)
O4—Nd1—O3—C6	97.5 (3)	O1—Nd1—N3—C8	93.8 (16)
N2—Nd1—O3—C6	-133.8 (3)	O6—Nd1—N3—C8	-64.6 (16)
N3—Nd1—O3—C6	-35.6 (3)	O2—Nd1—N3—C8	14.4 (16)
O5—Nd1—O3—C6	124.8 (3)	O4—Nd1—N3—C8	-47.9 (17)
O3 ⁱ —Nd1—O3—Nd1 ⁱ	0.0	N2—Nd1—N3—C8	174.7 (17)
O1—Nd1—O3—Nd1 ⁱ	89.71 (15)	O5—Nd1—N3—C8	-123.1 (16)
O6—Nd1—O3—Nd1 ⁱ	-136.12 (13)	O3—Nd1—N3—C8	41.5 (17)
O2—Nd1—O3—Nd1 ⁱ	-177.4 (2)	O3 ⁱ —Nd1—N2—C9	-102 (3)
O4—Nd1—O3—Nd1 ⁱ	-80.88 (14)	O1—Nd1—N2—C9	177 (3)
N2—Nd1—O3—Nd1 ⁱ	47.9 (2)	O6—Nd1—N2—C9	40 (3)
N3—Nd1—O3—Nd1 ⁱ	146.10 (14)	O2—Nd1—N2—C9	137 (3)
O5—Nd1—O3—Nd1 ⁱ	-53.50 (19)	O4—Nd1—N2—C9	-42 (3)
C3—N1—O1—Nd1	-79.8 (5)	N3—Nd1—N2—C9	99 (3)
C2—N1—O1—Nd1	102.1 (5)	O5—Nd1—N2—C9	-17 (3)
O3 ⁱ —Nd1—O1—N1	-146.6 (4)	O3—Nd1—N2—C9	-144 (3)
O6—Nd1—O1—N1	46.9 (5)	Nd1—N2—C9—S2	30 (34)
O2—Nd1—O1—N1	97.1 (4)	C3—N1—C2—C1	-1.2 (8)
O4—Nd1—O1—N1	159.5 (4)	01—N1—C2—C1	176.9 (5)
N2—Nd1—O1—N1	-61.9 (4)	N1—C2—C1—C5	0.4 (9)
N3—Nd1—O1—N1	16.0 (4)	C2—N1—C3—C4	0.9 (8)
O5—Nd1—O1—N1	-83.9 (5)	O1—N1—C3—C4	-177.2 (5)
O3—Nd1—O1—N1	147.2 (4)	N1—C3—C4—C5	0.2 (9)
O3—C6—O2—Nd1	1.9 (5)	C2-C1-C5-C4	0.7 (10)
C7—C6—O2—Nd1	-178.1 (5)	C3—C4—C5—C1	-1.0 (10)
O3 ⁱ —Nd1—O2—C6	-3.6 (3)	Nd1—N3—C8—S1	-75 (8)
Symmetry codes: (i) $-x+2, -y+2, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
04—H6…O1 ⁱ	0.85	1.83	2.675 (5)	178
06—H9…O2 ⁱⁱ	0.85	1.85	2.686 (4)	167
O6—H8····S2 ⁱⁱⁱ	0.85	2.31	3.162 (4)	175
O5—H10····S2 ⁱⁱⁱ	0.85	2.73	3.534 (4)	159
O5—H11···S1 ^{iv}	0.84	2.40	3.236 (4)	169
O4—H7····S1 ⁱⁱ	0.82	2.45	3.220 (4)	157
O4—H6…N1 ⁱ	0.85	2.70	3.484 (5)	155
Summatry addas: (i) $-m+2$ $-m+2$ $-m+2$	-1, (ii) -1 , -1 , -1 , (iii) -1	-1/2 $-1/2$ $-1/2$	$2 \cdot (iv) = \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$	1/2

Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x-1/2, -y+3/2, z-1/2; (iv) x+1/2, -y+3/2, z-1/2.

